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ABSTRACT

The regularized output least squares estima-
tion technique is considered as a procedure to
determine the permeability of an aquifer from
core measurements of permeability and pressure
data. For the numerical discretisation we em-
ploy the Rayleigh-Ritz variational method and
several numerical examples are discussed.

NOMENCLATURE

G  Matrix

H'! The Sobolev space of functions in L?
with first-order derivative in L2

K Permeability

Permeability measurements

Noisy permeability measurements

L Least-squares functional

L? The space of square integrable functions

M Number of terms expressing K(X)

N  Number of terms expressing p(X)

Ng Number of pressure measurements
N; Number of permeability measurements
Set of admissible permeability functions

a;  Unknown coefficients expressing K (z)

¢;  Unknown coefficients expressing p(z)

f Hydraulic source

P Pressure

p;  Pressure measurements

Noisy pressure measurements

z Space coordinate

z; Locations of the pressure measurements

Z; Locations of the permeability
measurements

a; Functions expressing p(z)

7,2 Regularization parameters

€ Amount of noise

u, v Positive constants

¥;  Functions expressing K(z)
P Vector

-] L?—norm
INTRODUCTION

In this paper we study the determination of the
reservoir parameter functions from sparse point-
wise measurements supplemented with measure-
ments of a nonlinear function of the parameter.
The specific application we have in mind is that
of determining a permeability function from core
measurements and pressure data, [1]. We use
a regularized output least squares procedure in
which the reservoir mapping is approximated by
linear combinations of polynomial functions as
in the Rayleigh-Ritz method. The regulariza-
tion used is the H'! seminorm that is related
to the potential energy functional of an elastic
membrane. This regularization gives sufficient
compactness to obtain the existence of a so-
lution to the associated minimization problem
while implying minimal additional smoothing.
Several numerical examples are investigated.

FORMULATION

We study the determination of a spatially de-
pendent permeability mapping K (z) from mea-
surements of the permeability at various loca-
tions along with pressure measurements. To-
wards this end, let (0,1) represent a one-
dimensional reservoir and let KX = K(z) be
a real-valued function defined on (0,1) de-
noting a permeability function that we wish
to estimate. We suppose that measurements
{pi};—17, of the pressure p are available at
No locations {z;};,_ 17 along with core mea-
surements {K;},_y5; of K at N; locations
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{&:};,_17;- We assume that at zy,, the con-
dition p(zy,) = 0 holds and that the reservoir
boundary is insulated. If f € L?(0, 1) represents
a hydraulic source and if K € @Q,4, where

Qua :={K € H'(0,1) | oo > u> K > v > 0}
(1)
where p and v are (given) positive constants,
then the pressure p is obtained as the unique
weak solution in H1(0, 1) of the problem, [2],

—(K(z)p'(z)) = f(z), z€(0,1) (2)
p'(0)=p'(1) =0 (3)

p(zn,) =0 (4)

Thus, the mapping Q.4 > K — p(K) € H*(0,1)

1s well-defined.

REGULARIZED
PUT LEAST
METHOD

OUT-
SQUARES

The approach we use to recover K from the data
obtained from the measurements

is the so-called regularized output least squares
(ROLS) method, [3]. Hence, we formulate the
following minimization problem:

minimizeg g, , L(K) (7
where
L(K) = /1K'2(:c)d:c +
7Y (oo K) =m0+ 1 D (K@)~ Ko (8)

where ,A > 0 are quantities to be specified.
In the right-hand side of eqn.(8), the first term
represents the potential energy and imposes that
K € H*(0,1), whilst the last term may repre-
sent prior estimates on the unknowns. It can be
shown, [4], that solutions to problem (7) exist.
In order to approximate the problem (7), we
express p and K as linear combinations

N

p(z) = Z ciai(z),

i=1

K@):}j%@@)

(9)

(10)

where {a;},_7% and {¢i},_737 are sets
of N and M linearly independent func-
tions in H?!(0,1), respectively. We can
choose ;(z) = z'7! for 4 = 1,M and
a;i(z) = (z — zn,)z' "t for 4 = 1, N, with the
latter choice ensuring that condition (4) is
automatically satisfied.

Applying the Rayleigh-Ritz variational
method we reduce the problem (2)-(4) to the
system of equations

Ge=p (11)

where, ¢ = (¢;),_13, and

In eqn.(12)
3

G(ll) =1,

*) _ J (1-1)
15 — - 111 No ~- )
Ttk—1 T+ k-2

w_ i (-1
T i k-1 My k—2
*) _ ij (265 —1—j)

W iy rk—2 Miijitk-—3
ar G- DG 1)

14
Noitji+h—4 (14)

for 7,7 = 2,N, k = 1, M. Alternatively, one
may use the finite element method as described
in [5]. From eqns (11)-(13) we have

Ge(a) = p. (15)

where a = (ax),_737- The functional L then
takes the form

L(a) = v{Cp — 2¢" ¢(a) + c" (a)Hc(a)}

1
+aTGoa + X{CK —2x"a+a"Hga} (16)

where
No Ny
Cp=) pt Cx=) Ki,
k=1 k=1
Ny Ny
5 SLACHTNE S EREPE S
k=1 k=1
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N, N,
Kp = E’l/)n(mk)Kk — sz_lKky
k=1 k=1
Ny
Hi =Y ai(ze)aj(@r)
k=1
Ny
= Z(l‘k — zy, )22 2,
k=1

GO ln — / ¢l(:c
0, fl4+n=23
= (I-1)(n-1)
4+n-3 ?

otherwise
for 4,7 = 1,N and I,n = 1,M. We can then
minimize L(a) subject to the constraints

(17)

M
00> pu> Y axi(z)

k=1

>v>0, z€(0,1)
(18)
using the NAG routine E04UCF, which is based
on a sequential programming method designed
to minimize an arbitrary smooth function sub-
ject to simple bounds on the variables and linear
and nonlinear constraints. In the computa-
tion, apart from the expression for L(a) given
by eqn.(16), one also needs to supply its gradi-

ent which is given by, [1],

VIL(a)= 2[—;& — 79+ (Go + ;HK)Q] (19)

where

Or=¢"C%ec(a), k=T, M

G¢ = He(a) - (20)
It can be shown, [1], that if we choose the vector
p, associated through eqn.(13) with the forcing
term f(z), to be sufficiently small then there is
at most one solution X € intQ4q of (7), and fur-
ther the solution a is differentiable with respect
to the data {. This differentiability provides a
tool with which one can investigate the sensi-
tivity of the interior optimal estimators a with
respect to perturbations in the data (, see [5].
From (11) and (19) we can give the optimality
conditions satisfied by the (interior) solution of
the minimization (7) as follows:

Ge(a) =

P (21)
G¢ = He(a) — ¢

(22)

0r = ¢"GWc(a), k=T, (23)
1 1
<Go+ XHK) a— Xﬁ—’YQ—Q (24)
or, in component form
N M
Y3 aG e =p,  (25)
j=1k=1
N M
SN wGe; ZH”C] G, (26)
j=1k=1
M 1
Z [ (Go)rmi + = HK)kz] 4 — Rk~
=1
N N
k
YY 4y Gl =0 (1)
i=1 i=1

fori=1,Nand k=1, M.

According to the discrepancy principle crite-
rion the regularization parameters v > 0 and
A > 0 are chosen such that

No

Z(p(mzy

i=1

~ i) %Z
%\/N0—|—N1—1|6| (28)

if instead of the exact measurements (5) and (6)
we use the noisy perturbed measurements

i:]-)NO)
i=1, M,

P =pi t+e
K;:Ki—i—ex

where € is a (small) amount of noise.

RESULTS

Let us take zy, = 1/2 and consider the following
test example:

K(z)=1+z, f(z)=26- 1827
p(z) = (2z — 1)(22% — 2z — 1)/2. (31)

Then from eqn.(13) we obtain

6% +3>+7+3]

= = - - , 3=1N.
PTG+ DG+ 2)G +3)
(32)
We take N = 3, =2, Ng = N; = 1. Then

0), (1 )(

(2z — 1)(c1 + caz + c2:c2)/2,
G =a:GY 4 a,G?),

eqns (9), (1 4) and (17) give

p(z) =
K(z) = a1 + azz,
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1 1/2  1/2
WM =1 172 712 7/12 |,

1/2 7/12 19/30

1/2  5/12  5/12
¢ =1 5/12 11/24 59/120 |,

5/12 59/120 11/20

3

pL=—7, p2 = —17/20, p3=-T7/10,

0 0

GO:(O 1).(33)

The constraint (18) recasts as the simple bounds
on the variables

p>a1>v, p—v>a>v—pu (34)
and the linear constaint
u>ap+ay >v. (35)

We distinguish three cases, as follows.

Case (a) No=1, N; =2

In this case we take Z; = 0 and Z5 = 1, such
that only boundary measurements (5) of K are
employed. Then eqns (17) and (20) give
p1:0, K1:1—|—€, K2:2—|—€, CpIO,
Cx=(1+6"+(2+¢)? (=0,

1‘{,123—|—26, Iig:2+6, H:ngg,

2 1
Then eqn.(16) gives

1
L(a1,a5) = a3 + T((1+€)° +(2+¢)°

—2(3 + 2€)a; — 2(2 +€) + 2a% + a
+2a1a3)

whilst eqns (19) and (24) give

2
VL(al,a2) = X(2a1 + as — 3 —

2¢,(14+ XNaz +a1 —2—¢€) =(0,0).
Solving (38) we obtain

3N+ 1 o
Mm+1 2T a1

a1 =€+ (39)

Then Kj(z) = e+ %, and according to the
discrepancy principle (28) we choose

| €|

A= ——
1—2]¢]

>0 (40)

where we assume that | € |< 0.5, i.e. the amount
of noise is less than 50% error in the measure-
ment of K; and less that 25% error in the mea-
surement of K. This gives a5 = 1+ e+ | € |,
as=1-2]¢e|, K¢(z):=af +ajz =1+4e+|€]
+z(1 — 2| €|). Observe that when ¢ = 0, then
we obtain K°(z) = 1 + z, which is the exact
solution. This shows that the retrieval of the
permeability K is unique. We can also evaluate
the LZ—norm |[|[K¢— K|| = \/lg | € |, which shows
that retrieval of the permeability K is stable, if
the regularization parameter A is chosen as in
eqn.(40). Finally, to determine the pressure we
solve the system of eqns (21), i.e.

(18 + 12¢€)c1 + (11 4 2€)cs
+(11 4+ 2€)ez = —18,

10(11 4 2€)c1 + 5(25 + 6¢)ca
+(129 + 22€)cs = —102,
10(11 4 2€)eg + (129 + 22¢€)c,

+2(71 4 10€)cs = —84 (41)

where for simplicity we have taken € > 0. The
solution of the system of eqns (41) is given by

c1 = —(8¢® 4 86¢ + 63)/A,
ca = —(16€® + 268¢ + 126) /A,
C3 I(

—8¢? + 232¢ + 126)/A. (42)

where A = (3 + 2¢)(4€% + 36¢ + 21). Ob-
serve that when e = 0, we obtain p°(z) =
(2z — 1)(222 — 2z — 1)/2, which is the exact
solution (31). This shows that the retrieval of
the pressure p is unique. We can also evaluate
the L?—norm

llp — p||* = 4¢%(68¢* + 1160€® + 57612

+6547¢ +2189)/(35A%)  (43)

which shows that the error norm (44) tends to
zero linearly with ¢, as ¢ — 0.

From (39)-(42) we obtain A = 0.0555 and

a; = 11, as = 09, c1 = —09520,
Cy = —19719, C3 = 1.9456
|K¢— K| =0.0577, ||p°—p||=0.0120 (44)

for € = 0.05, i.e. 5% noise, A = 0.125 and

a; = 12, as = 08, c1 = —09090,
c2 = —1.9399, c¢3=1.8912
|K¢— K|| =0.1154, ||p° —p|| = 0.0231 (45)

for e = 0.1, i.e. 10% noise, and A = 0.333 and
a; = 14, as = 06, c1 = —08350,
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Cy = —18692, c3 = 1.7846
|K¢— K| =0.2309, ||p°—p|| = 0.0428 (46)

for e = 0.2, i.e. 20% noise.

Figure 1 shows the numerical results obtained
for various amounts of noise ¢ € {0.05,0.1,0.2}.
From this figure it can be seen that the numer-
ical solutions for both K and p approach the
corresponding analytical solutions (31), as € de-
creases towards zero.

2.0+
K(x) >
- - /U/o
1.8 e
N - 0’0 y
- ‘o
1.6 - Pt
/b/v o °
1.4 o0
o
OOO
1247 oo°
4o
o
1.0 T T T I
0.0 0.2 0.4 06 08 x 1.0

(ii)

Figure 1: The numerical results for (i) K(z) and
(i) p(z), when € = 0.05 (000),e=0.1 (— ——)
and € = 0.2 (—...—), in comparison with the
analytical solutions (—-).

We note that we could have also proceeded

in a simpler way by solving directly (6) to yield
a1 = 1+¢€, az =1, and from (21)

c1 = —(54e? 4 169¢ + 126)/(2A,),

ca = —(66€? + 193¢ + 126)/ A,

cs = 2(30€* 4 92¢ + 63) /A,

| — K| =€, |lp—p|* = €*(27200¢*
+163200€> + 360572¢2 + 347316¢
+123227)/(560A5)

where Ay = (3 + 2¢)(10€% + 30e + 21).

Case (b) Ny =3, N; =0

In this case we take z; = 0 and 3 = 1, such that
only boundary measurements of p are employed.
Then eqns (17) give

pr=1/24¢ pa=—-1/2+¢, ps =0,

Cp=1/2+42€6% Cxk =0, k=0,

G=-1/2, = =—(1/2+¢)/2,
1/2 1/4 1/4
1/4 1/4 1/4
1/4 1/4 1/4

Hg = 03x2, H= (47)

Then eqns (25)-(27) give rise to the following
system of 8 nonlinear equations

0 = (60cy + 30c2 + 30c3)¢y
+(30cs + 35c5 + 35¢3) 6
+ (30c1 + 35¢3 + 38¢3) @3,

= (60(21 + 50¢y + 5063) @1

+ (50c1 + 55ca + 59c¢3) ¢2
+ (50c1 + 59cq + 66¢3) ¢s, (48)

3(2(c1 + 1)+ c2+c3) = (12a1 + 6az)¢;

+ (6ay + Baz) g2 + (6ay1 + baz) @3,

30(c1 +eates+1—2¢) =

(60a1 + 50as)¢1 + (70a; + 55a2)és

+(70a1 + 59az)ds,

30(c1+eatez+1—2€) =

(601 + 50as)¢1 + (70a: + 59a2)és
+(76a1 + 66az)¢s, (49)

—18 = (12a;1 + 6az)c1

+ (6a1 + bas) ez + (6a1 + baz) ca,

—102 = (60a; + 50az)c1 + (70a; + 55asz)cs

+(70a;1 + 59az)cs,

—84 = (60a; + 50az)c1 + (70a1 + 59as)cs
+(76a;1 + 66az)cs. (50)

120az
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with 8 unknowns a1, as, ¢1, ¢2, c3, ¢1, ¢2 and
¢3. Solving the system of eqns (50) we obtain

c1 = —(11a} + 61aras + 54a3)/(241),
cy = (ag —6lajas — 66@%)/A1:

cs = 2(a? 4 32ayas + 30a?)/A;  (51)

where A; = (2a1 + az2)(a? + 10a;a; + 10a?).
(i)
2.0
K(x)

1.8
16
1.4
1.2
1.0

I I I I ]

0.0 0.2 0.4 0.6 08 x 10

(ii)

0.6 T T T T ]

Figure 2: The numerical results for (i) K(z) and
(i) p(z), when € = 0.05 (000), e =0.1 (— ——)
and € = 0.2 (—...—), in comparison with the
analytical solutions (—-).

The nonlinear system of eqns (48) and (49)
is solved using MAPLE and only the solution

which ensures that a; and as satisfy the bounds
(34) and (35) with p = 10%° and v = 1071, is
accepted.  According to the discrepancy prin-
ciple (28) we have obtained v = 180 for ¢ = 0.05,
i.e. 5% noise, and

ay = 0.9968, a; = 0.9747, ¢; = —1.0086,
cy = —2.0258, c3 = 2.0226
| K¢ — K|| = 0.0173, |[jp° — p|| = 0.0036 (52)

v =90 for e = 0.1, i.e. 10% noise, and

a1 = 0.9786, ay = 0.9811, ¢; = —1.0211,
o = —2.0413, c3 = 2.0417
|K¢— K| =0.0312, |[|p°—p| = 0.0073 (53)

and v = 45 for € = 0.2, i.e. 20% noise, and

a1 = 0.9232, ap = 1.0229, ¢; = —1.0552,
3 = —2.0677, c3 = 2.0834
| K€ — K|| = 0.0655, ||p°— p|| = 0.0162. (54)

Figure 2 shows the numerical results obtained
for various amounts of noise € € {0.05,0.1,0.2}.
From Figures 1 and 2 it can be seen that there
1s better agreement between the numerical so-
lutions and the analytical solutions for both K
and p in Case (b) than in Case (a), and this
concludes the fact that the pressure measure-
ments (6) offer more accurate information than
the permeability measurements (5).

Case (¢c) Np=2, N; =1

In this case we take Z; = 0 and z; = 1, such
that we measure K at z = 0 and the pressure p
at = 1. Then eqns (17) give

p1=—1/24+¢ p2=0, K; =1+¢,
Cpo = (—1/24 €)% Ck = (L +¢)%
G=C=0G=—(1/2+¢)/2,

k1 =14k, "'6220,HK:<(1) 8);
1/4 1/4 1/4
H=| 1/4 1/4 1/4 (55)
1/4 1/4 1/4

Then eqns (25)-(27) give rise to the system of
three eqns (5) and the following system of 5 non-
linear equations

60(041 —-1- 6)

)\’}/ = (60C1 + 30¢s + 30C3)¢1

+(30cy + 35¢5 + 35c3) 62
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+ (30c1 + 35¢3 + 38¢s) @3,
= (60cy + 50cs + 50c3) ¢1

+ (50c1 + 55ca + 59¢3) ¢2

+ (50c1 + 59¢3 + 66¢3) @3,

30(c1 +eates+1—2¢) =

(12a1 + 6az2)é1 + (6a1 + baz) ¢2

+ (6a1 + baz) ¢3,

30(c1 +eates+1—2¢) =

(60ay + 50as)¢1 + (70ay1 + 55az)¢2

+(70a1 + 59as3)ds,

30(c1 +eates+1—2¢) =

(60ay + 50a2)¢1 + (70a1 + 59az)¢2

+(76a1 + 66az)¢s (B7)

with 8 unknowns a1, as, c1, ¢z, c3, @1, ¢2 and ¢3.

Imposing A = 1/v, according to the discrepancy

principle (28) we have obtained y = 41, for € =

0.05, and

a1 = 1.1165, a5 = 0.9752, ¢; = —0.9246,
co = —1.8947, c3=1.8773

[|[K¢— K| =0.1043, ||p® —p|| = 0.0229. (58)

120az

Figure 3 shows the numerical results obtained
for the Cases (a)-(c) for e = 0.05, i.e. 5%
noise added in the input data. From this fig-
ure it can be seen that the numerical solutions
for K(z) and p(z) provide a stable and reason-
able accurate approximation to the analytical
solutions (31). More interesting it can be seen
that Case (b) provides the best information in
the inverse problem. In Case (c) we imposed
that A = 1/ and used the discrepancy principle
(28). Other values of the regularization param-
eters v and A can be selected, and, for example,
for A = 1/(107v), v = 41 we obtain

a1 = 1.0573, ap = 1.0608, c; = —0.9449,
cy = —1.8887, c3=1.8892
| K€ — K|| = 0.0895, ||p°—p|| = 0.0192 (59)

whilst for A = 1/(100v), v = 41 we obtain

a1 = 1.0507, ap = 1.0704, c; = —0.9473,
cy = —1.8879, c3 = 1.8904
|K<— K|| = 0.0883, ||p°— p|| = 0.0188. (60)

From eqns (58)-(60) it can be seen that by vary-
ing v and X independently we can obtain even
better estimates for the unknowns than those
given by (58). Nevertheless, further investiga-
tions are necessary in order to select simulta-
neously both the regularization parameters y

and A. A possible choice could be the L-surface
method which would extend the L-curve method
to two variables.

(i
0.6

p(X) e

0.3

0.0

-0.3

06 T T T T 1
0.0 0.2 0.4 0.6 08 yx 10

Figure 3: The numerical results for (i) K(z) and
(ii) p(z), when e = 0.05 for Case (a) (— — —),
Case (b) (0 00), and Case (¢) (—...—), in com-

parison with the analytical solutions (—-).

CONCLUSIONS

This study has investigated the application of
the regularized output least squares (ROLS)
method to the determination of the perme-
ability of a reservoir from core measurements
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and pressure data. Upon the application
of the Rayleigh-Ritz variational method the
inverse problem is recast as a constrained
minimization problem for which the gradient of
the least-squares functional which is minimized
can be calculated exactly. Lower dimensional
problems can be solved almost analytically
using MAPLE, but for higher dimensional pa-
rameter identification one needs to produce an
appropriate computer programme. It was found
that the pressure measurements contain more
accurate information about the solution than
the permeability measurements themselves,
provided that the regularization parameter is
properly chosen according to the discrepancy
principle. If both core measurements of the
permeability and the pressure are used then
this involves the selection of two regularization
parameters whose proper selection criterion
remain yet to be found. Future work will be
concerned with the application of the ROLS for
the determination of the thermal properties in
transient heat conduction, [6].
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